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A B S T R A C T

Objective: Repetitive subconcussive head impacts (RSHI) may lead to structural, functional, and metabolic al-
terations of the brain. While differences between males and females have already been suggested following a
concussion, whether there are sex differences following exposure to RSHI remains unknown. The aim of this
study was to identify and to characterize sex differences following exposure to RSHI.
Methods: Twenty-five collegiate ice hockey players (14 males and 11 females, 20.6 ± 2.0 years), all part of the
Hockey Concussion Education Project (HCEP), underwent diffusion-weighted magnetic resonance imaging
(dMRI) before and after the Canadian Interuniversity Sports (CIS) ice hockey season 2011–2012 and did not
experience a concussion during the season. Whole-brain tract-based spatial statistics (TBSS) were used to
compare pre- and postseason imaging in both sexes for fractional anisotropy (FA), mean diffusivity (MD), axial
diffusivity (AD), and radial diffusivity (RD). Pre- and postseason neurocognitive performance were assessed by
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the Immediate Post-Concussion Assessment and Cognitive Test (ImPACT).
Results: Significant differences between the sexes were primarily located within the superior longitudinal fas-
ciculus (SLF), the internal capsule (IC), and the corona radiata (CR) of the right hemisphere (RH). In significant
voxel clusters (p < 0.05), decreases in FA (absolute difference pre- vs. postseason: 0.0268) and increases in MD
(0.0002), AD (0.00008), and RD (0.00005) were observed in females whereas males showed no significant
changes. There was no significant correlation between the change in diffusion scalar measures over the course of
the season and neurocognitive performance as evidenced from postseason ImPACT scores.
Conclusions: The results of this study suggest sex differences in structural alterations following exposure to RSHI.
Future studies need to investigate further the underlying mechanisms and association with exposure and clinical
outcomes.

1. Introduction

Concussion is a common injury in contact sports, with an incidence
ranging between 1.6 and 3.1 per 1000 athlete exposures (Agel et al.,
2007a, 2007b; Flik et al., 2005). Women are at higher risk than men for
sustaining a sports-related concussion and they represent a large pro-
portion of the athletic community in organized sports (Abrahams et al.,
2014; Black et al., 2017; Covassin et al., 2003; Gessel et al., 2007). In
fact, female participation in National Collegiate Athletic Association
(NCAA) sanctioned sports is currently at an all-time high, where an
estimated 43% (~210,000) of all collegiate student-athletes are women
(Irick, 2015). However, despite the high number of female athletes,
females remain an understudied population, as only a small number of
studies have focused on female athletes. Moreover, evidence from these
studies suggests that females have worse outcomes following concus-
sion compared with males (Baker et al., 2016; Broshek et al., 2005;
Colvin et al., 2009; Covassin et al., 2013, 2012, 2007; Majerske et al.,
2008; Miller et al., 2016; Zuckerman et al., 2014). Specifically, women
reported more post-concussive symptoms with greater symptom se-
verity (Zuckerman et al., 2014), performed worse on neurocognitive
tests (Broshek et al., 2005; Colvin et al., 2009; Covassin et al., 2013,
2012, 2007; Majerske et al., 2008), and demonstrated longer periods of
recovery compared to males (Baker et al., 2016; Miller et al., 2016;
Zuckerman et al., 2014).

Following a concussion, brain alterations have been detected using
advanced neuroimaging techniques (for review see Shenton et al.,
2012). One of these advanced techniques is diffusion magnetic re-
sonance imaging (dMRI), which has been repeatedly used to detect and
to characterize white matter (WM) alterations related to brain injury
(Koerte et al., 2015; Shenton et al., 2012). However, to date, there is
only one study using dMRI that has investigated sex differences in
structural brain alterations following a concussion (Fakhran et al.,
2014). This study included 47 male and 22 female individuals after a
confirmed concussion (Fakhran et al., 2014). In this study, findings

indicated that male concussed individuals demonstrated decreased
fractional anisotropy (FA) in the uncinate fasciculus compared to con-
cussed females or controls (Fakhran et al., 2014).

Even more common than concussions are subconcussive head im-
pacts in contact sports. Evidence here suggests that repetitive sub-
concussive head impacts (RSHI) may also result in structural, func-
tional, and metabolic alterations of the brain (for review see Koerte
et al., 2015). Of note, dMRI has shown sensitivity to detect even subtle
WM alterations related to RSHI (Koerte et al., 2015). Furthermore,
dMRI parameters have predicted impairments in executive function,
attention, memory, speed of processing, and learning following trau-
matic brain injury (TBI) (Caeyenberghs et al., 2011a, 2011b, 2014).
Detection of sex-specific WM changes related to RSHI could facilitate an
individualized clinical management at an early stage of potential brain
injury. However, to date, there are no studies investigating sex differ-
ences in brain alterations following exposure to RSHI. Thus, the aim of
this study is to evaluate potential sex differences in the brain's WM
following exposure to RSHI in a sample of collegiate ice hockey players
using dMRI.

2. Materials and methods

2.1. Participants and procedures

All study participants were part of the Hockey Concussion
Education Project (HCEP), which was conducted during the Canadian
Interuniversity Sports (CIS) ice hockey seasons of 2009–2010 and
2011–2012. The present study analyzed participants of the 2011–2012
HCEP, which used clinical examination, neurocognitive assessment,
and pre- and postseason magnetic resonance imaging (MRI) as well as
sequential testing and imaging at three time points after any concussion
among ice hockey players (Echlin, 2012). Data from the HCEP have
already been analyzed with respect to other specific research questions
(Chamard et al., 2012; Echlin, 2010, 2012; Echlin et al., 2014, 2010a,

Table 1
Participant-related characteristics.

Males Females p-Value

Number of players 14 11 –
Age (in years)

(mean ± SD)
21.7 ± 1.3 19.2 ± 1.8 0.0005

Handedness
(right/left/ambidextrous)

10/3/1 10/1/0 0.6040

ImPACT score (preseason testing)
(mean ± SD)

Verbal memory 90.9 ± 4.5 91.0 ± 8.6 0.3615
Visual memory 83.7 ± 8.6 85.4 ± 10.0 0.5358
Visual motor speed 44.1 ± 4.2 42.7 ± 3.7 0.3712
Reaction time 0.5 ± 0.1 0.6 ± 0.1 0.0862

ImPACT score (postseason testing)
(mean ± SD)

Verbal memory 89.4 ± 7.7 94.7 ± 4.1 0.0608
Visual memory 81.8 ± 11.9 79.2 ± 9.9 0.4623
Visual motor speed 47.4 ± 5.3 42.9 ± 5.4 0.0344
Reaction time 0.5 ± 0.1 0.5 ± 0.1 0.4613

This table gives an overview of participant-related characteristics, including the number of male and female participants, age, handedness, and pre- and postseason scores according to the
four composite scores (verbal memory, visual memory, visual motor speed, and reaction time) derived from the results of the Immediate Post-Concussion Assessment and Cognitive Test
(ImPACT). One female participant did not undergo neurocognitive assessment by the ImPACT.
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2012, 2010b, 2010c; Helmer et al., 2014; Koerte et al., 2012b;
Pasternak et al., 2014; Sasaki et al., 2014). The study was approved by
ethics committees at each CIS university, and was performed in ac-
cordance with the Declaration of Helsinki. Written informed consent
was obtained from all participants prior to the investigations.

For the 2011–2012 HCEP, exclusion criteria were general MRI ex-
clusion criteria (e.g., metallic or electronic implants), structural MRI
abnormalities, previous eye surgery, severe cognitive impairment, and/
or a history of any psychiatric or neurological diseases. The team
physician conducted the pre- and postseason clinical examinations.
Moreover, concussions during the season were diagnosed and reported
by an independent designated specialist physician who attended the
games. In this context, concussion was defined with respect to the
Zürich consensus statement, which met the criteria by a later consensus
conference (McCrory et al., 2009, 2013). For the present study, only
HCEP participants that (1) did not experience a concussion during the
course of the 2011–2012 CIS ice hockey season, and (2) completed pre-
and postseason dMRI were included in the analyses.

In total, 45 ice hockey players (25 males and 20 females) were
enrolled in the 2011–2012 HCEP. Among this cohort, 5 males and 6
females sustained a concussion during the season and were therefore
excluded from the analysis. An additional 9 participants were excluded
due to the following reasons: missing pre- or postseason dMRI (4
males), poor scan quality in either pre- or postseason dMRI sequences
(2 males and 1 female), incidental finding of a large arachnoidal cyst (1
female), or age more than eight standard deviations (SDs) above the
cohort's mean age (1 female). Thus, 25 participants (14 males and 11
females) were included in the analyses (Table 1).

2.2. Cognitive testing

Neurocognitive function was assessed using the Immediate Post-
Concussion Assessment and Cognitive Test (ImPACT) before the be-
ginning of the season and at the end of the season (ImPACT
Applications Inc., San Diego, CA, USA; https://www.impacttest.com).
The ImPACT is a computer-based assessment composed of a concussion
symptom inventory as well as 6 modules for assessment of neurocog-
nitive function. Although it is primarily applied in subjects with re-
ported concussion, it can also be used to evaluate neurocognitive
function in general. Based on the results obtained from the 6 neuro-
cognitive test modules, 4 composite scores were generated (verbal
memory, visual memory, visual motor speed, and reaction time).
ImPACT composite scores have already been used in previous in-
vestigations among the 2011–2012 HCEP participants (Echlin et al.,
2012; Sasaki et al., 2014). The ImPACT results were independently
evaluated by a neuropsychologist.

2.3. Acquisition of dMRI

All imaging was performed on a 3T MRI scanner with an eight-
channel head coil array (Achieva, Philips Medical Systems). A sequence
with two averages and 60 non-colinear diffusion directions (TR/TE:
7015 ms/60 ms, b: 0 and 0.7 ms/mm2, 70 slices) was acquired using a
2.2 mm isotropic voxel size and a 100 × 100 matrix reconstructed into
a 112 × 112 matrix with a resolution of 2 × 2 × 2.2 mm3.

Between preseason and postseason imaging, a scanner update took
place (gradient coil change). A hardware update could potentially affect
diffusion measures. However, since the present study compares the
change in dMRI over the course of one season for each individual
(postseason minus preseason) and the update would have affected all
included data sets in the same way, this should not have confounded
our longitudinal results.

2.4. Analysis of dMRI

2.4.1. Data processing
First, quality checks were performed by visually inspecting diffu-

sion-weighted data sets using 3D Slicer (http://www.slicer.org; version
4.5.0-1, Surgical Planning Laboratory, Brigham and Women's Hospital,
Boston, MA, USA) (Fedorov et al., 2012). To remove misalignments, an
affine registration with the baseline volume was conducted for the data
sets of each participant, and eddy current corrections were carried out
using the MCFLIRT and eddy tools of the FMRIB Software Library (FSL,
version 5.0.9; The Oxford Centre for Functional MRI of the Brain, Ox-
ford, UK). Then, automated OTSU masks covering the entire brain were
generated for each participant, excluding non-brain areas and back-
ground noise (3D Slicer, version 4.5.0-1). The resulting brain masks
were again visually assessed for quality, and were manually edited
where necessary (e.g., incorrect overlap of the mask with brain volume,
missing voxels within the brain volume). A diffusion tensor was esti-
mated for each voxel using a multivariate linear fitting algorithm, and
three pairs of eigenvalues and eigenvectors were obtained. Diffusion
scalar measures, which included FA, mean diffusivity (MD, also known
as trace), axial diffusivity (AD), and radial diffusivity (RD), were then
calculated for each voxel based on these values, as described previously
(Koerte et al., 2012b; Sasaki et al., 2014).

2.4.2. White matter analysis
For analysis of WM diffusion properties, tract-based spatial statistics

(TBSS) were carried out (Smith et al., 2006). All analysis protocols and
detailed descriptions of the TBSS approach, which is part of FSL, are
freely available (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS) (Jenkinson
et al., 2012).

TBSS was conducted separately for FA, MD, AD, and RD, whereas
the WM skeleton was generated based on FA maps. The individual maps
were aligned and registered to the FMRIB58_FA template, which is in
the same space as the MNI152 standard space image (http://fsl.fmrib.
ox.ac.uk/fsl/fslwiki/FMRIB58_FA). The mean FA map was projected to
the FMRIB58_skeleton to create a mean FA skeleton. The FA threshold
was set at> 0.3 to exclude peripheral tracts where there was con-
siderable inter-subject variability or partial volume effects (Koerte
et al., 2012b; Sasaki et al., 2014). MD, AD, and RD maps were regis-
tered to the FMRIB58_FA template by applying the nonlinear transfor-
mation obtained from the FA registration.

The voxels that formed the skeletons were extracted for each in-
dividual scan using the fslsplit command. This step was a prerequisite
for subsequent subtraction of the participant-specific data sets obtained
during pre- and postseason scanning using the fslmaths command. To
depict the change in diffusion scalar measures over the course of the ice
hockey season, the preseason data sets were subtracted from the post-
season data sets, which generated skeletonized delta maps for each
participant for FA, MD, AD, and RD, respectively. The delta maps were
then merged across participants into a single file using the fslmerge
command.

2.5. Statistical analyses

To identify voxel clusters with statistically significant group differ-
ences between females and males in the change in diffusion scalar
measurements over the course of the play season, unpaired t-tests were
performed applying the randomise command (http://fsl.fmrib.ox.ac.
uk/fsl/fslwiki/GLM), adjusted for age and handedness. The random
permutation number was set at 5000, and a p-value of< 0.05 was
considered statistically significant, following threshold-free cluster en-
hancement and correction for multiple comparisons. The resulting
statistical maps for FA, MD, AD, and RD were visualized in FSLView
(version 3.2.0). Then, using the FSL cluster tool, we extracted the size of
the statistically significant voxel clusters for FA, MD, AD, and RD, re-
spectively. For improved illustration, the statistically significant voxel
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clusters were enlarged using the tbss_fill command.
Then, the statistical map for each of the diffusion scalar measures,

thresholded at p < 0.05, was transformed into a binary map using
fslmaths. These binary maps distinguished between statistically sig-
nificant and non-significant voxels. Then, average diffusion scalar
measures were extracted from the statistically significant voxel clusters
for each participant and visualized by scatter plots using GraphPad
Prism (version 7.0; GraphPad Software Inc., La Jolla, CA, USA). The
spatial location of the significant voxel clusters was determined in re-
lation to WM anatomy using the atlasquery command in combination
with the ICBM-DTI-81 white-matter labels atlas (http://fsl.fmrib.ox.ac.
uk/fsl/fslwiki/Atlases) (Mori et al., 2008).

Additionally, means ± SD were calculated for the participants' four
composite scores derived from the results of the ImPACT evaluations.
Mann-Whitney and Fisher exact tests were performed to assess differ-
ences between male and female participants. The individuals' change in
FA, MD, AD, and RD values derived from the statistically significant
voxel clusters as identified using TBBS were correlated with the post-
season ImPACT composite scores using Spearman's rank correlation
coefficient (rs). To adjust for multiple comparisons, we controlled the
false discovery rate using the Benjamini & Hochberg procedure
(Benjamini and Hochberg, 1995). GraphPad Prism (version 7.0) was
used for these statistical tests, with the significance level set at
p < 0.05.

3. Results

3.1. Participant characteristics

Table 1 shows participant-related characteristics and pre- and
postseason scores of the four composite scores derived from the Im-
PACT assessments. There was a statistically significant difference in age
between female and male participants (21.7 ± 1.3 vs.
19.2 ± 1.8 years, p = 0.0005; Table 1).

3.2. White matter diffusion

Voxel clusters with statistically significant differences between male
and female participants in change over time (postseason minus pre-
season) are shown for FA, MD, AD, and RD in Fig. 1.

The statistically significant FA cluster primarily includes the su-
perior longitudinal fasciculus (SLF), internal capsule (IC), and corona
radiata (CR) of the right hemisphere (RH; Fig. 1). There was no sta-
tistically significant FA cluster detected in the left hemisphere (LH;
Fig. 1). In the statistically significant cluster, FA values did not change
significantly in male participants over the course of one season (pre- vs.
postseason: 0.6202 ± 0.0121 vs. 0.6270 ± 0.0131, p > 0.05),
whereas a decrease in FA in female participants was observed (pre- vs.
postseason: 0.6247 ± 0.0147 vs. 0.5978 ± 0.0184, p < 0.05; Figs. 1
& 2). The statistically significant FA cluster had a size of 1494 voxels.

The statistically significant MD cluster mainly includes the SLF, IC,

Fig. 1. Results of the tract-based spatial statistics (TBSS) analysis I.
This figure illustrates the results of the TBSS analysis (axial view). Voxel clusters with statistically significant differences (p < 0.05) in change over time (postseason minus preseason
data sets) between male and female participants are highlighted in red to yellow. The TBSS analysis was carried out for fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity
(AD), and radial diffusivity (RD). Voxels of the statistically significant clusters are thickened into local tracts on a standardized FA skeleton (FMRIB58_FA-skeleton; green) and a
standardized diffusion-weighted image (FMRIB58_FA). The left side in each image corresponds to the right hemisphere (RH). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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CR, and the external capsule (EC) of the RH, whereas the LH again
showed no statistically significant cluster (Fig. 1). In the significant
voxel cluster, MD did not change significantly in male participants (pre-
vs. postseason: 0.002369 ± 0.00007 vs. 0.002373 ± 0.00011,
p > 0.05), whereas female participants demonstrated an increase in
MD (pre- vs. postseason: 0.002276 ± 0.00007 vs.
0.002431 ± 0.00008, p < 0.05; Figs. 1 & 2). The statistically sig-
nificant MD cluster was composed of 7481 voxels.

Regarding both AD and RD, values increased in female participants
over the course of one season (AD: pre- vs. postseason:
0.001263 ± 0.00003 vs. 0.001339 ± 0.00003, p < 0.05; RD: pre-
vs. postseason: 0.000501 ± 0.00002 vs. 0.000546 ± 0.00003,
p < 0.05), whereas they did not in male participants (AD: pre- vs.
postseason: 0.001315 ± 0.00003 vs. 0.001316 ± 0.00005,
p > 0.05; RD: pre- vs. postseason: 0.000523 ± 0.00002 vs.
0.000520 ± 0.00003, p > 0.05; Figs. 1 & 2). Again, statistically sig-
nificant clusters primarily involved the SLF, IC, CR, and EC of the RH
(Fig. 1). The statistically significant AD cluster had a size of
6110 voxels, and the statistically significant RD cluster included
7355 voxels.

3.3. Correlation of diffusion scalar measures with ImPACT scores

Table 1 shows the results of pre- and postseason ImPACT assess-
ments regarding the four composite scores (verbal memory, visual
memory, visual motor speed, and reaction time). There were no sta-
tistically significant differences between female and male participants

except for visual motor speed at postseason assessment, where male
athletes demonstrated significantly improved function in visual motor
speed compared to females (p = 0.0344; Table 1).

Furthermore, there were no statistically significant correlations of
postseason ImPACT composite scores with individuals' change in FA,
MD, AD, or RD over the season of play derived from significant voxel
clusters.

4. Discussion

This study revealed sex-specific differences of change in diffusion
measures over the course of one ice hockey season (Figs. 1 & 2). Sta-
tistically significant voxel clusters were observed in several brain re-
gions, including the SLF, IC, CR, and EC (Fig. 1). More specifically, in
these voxel clusters female athletes demonstrated a decrease in FA and
an increase in MD, AD, and RD whereas, in contrast, diffusion measures
did not change significantly over the course of the season in male
athletes (Fig. 2).

Changes in WM diffusivity over time can be observed during aging
but have also been associated with a variety of psychiatric or neuro-
logical diseases such as mild TBI (Assaf and Pasternak, 2008; Westlye
et al., 2010). Evidence suggests that RSHI may also lead to detectable
WM alterations (Koerte et al., 2012a, 2012b; Lipton et al., 2013;
McAllister et al., 2014). In this context, decreased FA and increased AD
and RD have been shown to be associated with heading the ball in
soccer (Koerte et al., 2012a; Lipton et al., 2013), whereas increased MD
has been reported in contact-sports athletes compared to non-contact

Fig. 2. Results of the tract-based spatial statistics (TBSS) analysis II.
This figure depicts scatter plots of average values in the voxel clusters with statistically significant group differences (p < 0.05; Fig. 1) for fractional anisotropy (FA), mean diffusivity
(MD), axial diffusivity (AD), and radial diffusivity (RD). The values are shown for males vs. females and pre- vs. postseason data, respectively. Circles or triangles represent individual
values, whereas horizontal bars represent the median and interquartile range. There was a statistically significant difference between pre- and postseason FA, MD, AD, and RD in female
participants (p < 0.05). In contrast, no statistically significant changes were observed in males over the course of one season with respect to FA, MD, AD, and RD (p > 0.05).
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sports athletes after one season (McAllister et al., 2014). However, al-
though these studies included male and female athletes in their study
cohorts, sex-specific differences in WM diffusivity were not reported. To
the best of our knowledge, we here demonstrate for the first time
widespread statistically significant differences between female and
male athletes following RSHI for changes in diffusion measures.

Sex differences in the change of WM diffusivity were predominantly
located within the RH. The underlying mechanisms may potentially
include differences in vulnerability, developmental characteristics, or
differences in exposure to head impacts. Future studies will need to
elucidate reasons for asymmetric changes due to RSHI and the under-
lying mechanisms for sex-specific differences in the change of WM
diffusivity following RSHI. There are two main components that may
play a role regarding sex-specific WM diffusivity changes over time.
First, sex differences following exposure to RSHI could be associated
with differences in RSHI incidences and intensities. Studies have re-
ported that female athletes are at greater risk for concussions when
compared to males (Covassin et al., 2003; Forward et al., 2014; Marar
et al., 2012), which has been associated with smaller neck girth and
weaker neck muscles compared to males (Tierney et al., 2005). This
increased risk for brain trauma may also be the case when exposed to
RSHI and could explain why differences in change in diffusion measures
occurred over the course of one ice hockey season between male and
female participants (Figs. 1 & 2). Second, sex differences in the change
of WM diffusivity following RSHI could be due to physiological or
hormonal differences between males and females, as suggested by in-
vestigations among patients suffering from TBI (Djebaili et al., 2005;
Emerson et al., 1993; Kupina et al., 2003; Roof and Hall, 2000). Both
estrogen and progesterone, which exist in different concentrations in
males and females, may have neuroprotective effects after TBI, with
previous data suggesting that females may profit from a higher neu-
roprotective effect (Djebaili et al., 2005; Kupina et al., 2003; Roof and
Hall, 2000). However, an opposite situation has also been observed in a
study where estrogen was administered to rats prior to inducing a TBI,
leading to the observation that estrogen exacerbated injury in female
rats but not in males (Emerson et al., 1993). Furthermore, greater rates
of basal glucose metabolism and cerebral blood flow in females have
been suggested as contributing to differences between the sexes in re-
sponse to concussion (Andreason et al., 1994; Esposito et al., 1996). In
females increased demands for glucose and increased blood flow may
lead to an exacerbation of the neuro-metabolic cascade after injury
(Broshek et al., 2005). However, it is important to note that most of the
previous study results have been restricted to moderate to severe TBI
rather than to RSHI, or they have been conducted in animal models,
thus leaving open the question of whether such results are directly
translatable to human RSHI.

In concussion, sex differences in neurocognitive and clinical out-
come have been shown, with the number of symptoms and symptom
severity being higher among concussed females (Zuckerman et al.,
2014). Furthermore, worse verbal, visual, and motor speed deficits
have been reported in females (Covassin et al., 2012; Covassin et al.,
2007; Majerske et al., 2008), and symptom duration was prolonged
when compared to males (Baker et al., 2016; Miller et al., 2016;
Zuckerman et al., 2014). The present study used the ImPACT assess-
ment to test pre- and postseason neurocognitive performance. Although
no statistically significant differences were found between female and
male athletes at preseason evaluation, at postseason assessment, male
athletes demonstrated significantly improved function in visual motor
speed compared to their female counterparts (Table 1). However, there
was no statistically significant correlation of change in diffusion scalar
measures over the course of the season of play and postseason ImPACT
composite scores. In this context, it is important to note that the Im-
PACT assessment, which has been designed for the detection of con-
cussion-related symptoms, may not be sufficiently sensitive for the
detection of subtle neurocognitive alterations following RSHI. It is
therefore not surprising that we did not find significant correlations

with postseason ImPACT scores in our study that focused on RSHI. More
sensitive methods to assess the effects of RSHI are currently being de-
veloped (Echemendia et al., 2016; Koerte et al., 2017; Zhang et al.,
2013). However, it could also be the case that major cognitive changes
due to RSHI occur later and, thus, may not have been detectable by
postseason ImPACT assessments. Thus, further studies are needed to
explore the relationship between sex-specific changes in WM diffusivity
and potential subtle neurocognitive changes, using more sensitive
neurocognitive measures. Furthermore, additional complementary
techniques such as electrophysiological measurements, analyses of
functional connectivity, and evaluation of cerebral blood flow may help
to investigate further and to enhance our understanding of the under-
lying mechanisms following RSHI, and particularly to explore WM
diffusivity differences between males and females related to RSHI.
Regarding concussion, different modalities have already been applied
to study sex differences. In contrast, approaches using different tech-
niques or even multi-modal setups in RSHI are just emerging (Covassin
and Elbin, 2011; Koerte et al., 2015; Resch et al., 2017).

There are limitations to this study that need to be taken into account
when interpreting the data. First, without a control group, the differ-
ence between pre- and postseason dMRI cannot be attributed to RSHI
only and other factors such as training might play a role. However, the
changes found confirm the existing literature on WM alterations fol-
lowing exposure to RSHI. Second, results from this study may not be
generalizable to other sports and thus need to be followed-up by further
studies in larger cohorts and including other sports. Third, head impact
forces and frequencies were not measured in our present study. Future
studies should include quantitative assessments of head impact ex-
posure to understand better the underlying mechanisms of sex-specific
differences in alterations in WM diffusivity, and we need to determine
whether or not the observed sex differences can distinctly be attributed
to RSHI exposure. Fourth, there was a statistically significant difference
in age between female and male participants (Table 1). Although the
analyses performed in this study were adjusted for age, we cannot ca-
tegorically rule out any potential effect of age on WM diffusivity
changes following RSHI. Fifth, group-wise analysis using TBSS may not
be sensitive to the spatial location of changes in diffusion properties in
heterogeneous conditions such as exposure to RSHI. However, results of
this study provide an overview of several regions involved that should
be investigated further regarding subject-specific changes. Finally, de-
spite these limitations, we think that the present study demonstrates for
the first time sex differences in WM alterations following exposure to
RSHI, which, importantly, may pave the way for future research on sex-
specific alterations.

5. Conclusions

Previous research has shown that exposure to RSHI during a single
varsity ice hockey season can result in significant alterations in WM
diffusivity. The results of this study further suggest sex differences in
WM diffusivity following exposure to RSHI. The underlying mechan-
isms remain to be elucidated but may include an increased vulnerability
of the female brain to RSHI. Future studies are also needed to in-
vestigate the association between neurocognitive and clinical outcome
with brain alterations in more detail.
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